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What is Machine Learning?
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 Three key elements

 Task: what we ask the computer to do

 Performance: how well the computer does at that task

 Experience: data we provide to the computer to learn from

 Iterative process: computer gets better at a task over 

time (but not necessarily every time)

A computer learns if it improves its performance on a 

task over time based on experience. 

Adapted from Mitchell (1997)



Tasks vs. Performance and Experience
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 How we measure performance and what 

experience we use depends on the task

Task Performance Experience

Predict Visits from Mobile 

Geolocation Data

Accuracy of Visit 

Identification

Device data collected from 

app throughout the day

Automated Assistant Quality of interview, 

Helpfulness of Assistance

Outcomes of interactions 

with people

Predicting Breakoff from 

Web Surveys

Accuracy of predictions Paradata collected during 

prior web surveys

Automating Behavior 

Coding

Matching between 

automated/manual codes

Transcripts that are manually 

coded by a person



What is Machine Learning?
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 Machine learning is a paradigm for problem solving

 Traditional approach: develop an algorithm to solve a 
given problem

 List of steps to take (a recipe or plan)

 Implement those steps in a programming language

 Engineering-focused approach

 Learning approach: provide many examples for the 
computer to learn from

 It discovers patterns that solve problems in examples

 Data-focused approach



Why Do We Want Learning?
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 Computer Science Perspective:

 Task requires too many steps to program (autonomous 

cars)

 Task is too difficult to explain (no human expertise)

 Computer can find a solution more efficiently or 

effectively

 Want software to be able to adapt (to changing inputs)

 Long-term impact: will open up the creation of 

software as tools by non-programmers



Why Do We Want Learning?
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 Data Science Perspective:

 Can automatically discover patterns and relationships 

in data without requiring prior knowledge

 Might have no theory describing the relationships between 

predictors and outcomes

 Especially as the sizes of our data sets grow (organic/Big 

Data)

 Can validate existing theory

 Eventually to automate tasks that a computer is well 

suited to perform

 Free up people to work on more complicated tasks



Terminology
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Feature or Attribute: a particular type of measurement
AKA: covariates, independent variables, spreadsheet column

Instance: a collection of attribute values for one entity
AKA: observation, data point, spreadsheet row

Label: a particular value assigned to an instance
AKA: outcome, dependent variable

Class: a possible value for a label
Categorical: Classification Numerical: Regression



Terminology
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 Example Data Set:

Age Gender Education Income

64 F College 60-100k

43 M HS <30k

39 F Less than HS >100k

57 M College 30-60k

Respond?

R

NR

NR

R

Instance1

Instance2

Instance3

Instance4

Attributes/Features Labels

Classes = Respondent (R) or Non-respondent (NR)



Steps to Setting up Learning
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1. Determine type of learning problem

 What task should the computer learn?

 What data is available?

2. Determine what representation you want to use

 How should the computer “think” about the task?

 What are the characteristics of the task?

3. Determine the learning algorithm you want to use

 How should the computer create and refine the 

representation?

 What are the characteristics of the data?



Supervised Learning Problems
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 Tasks: assign some label Y to data X

 Stock market prediction; weather forecasting; 
image recognition; cancer identification

 Performance Measures: accuracy, sensitivity (recall), 
specificity, precision

 How many labels Y correct? How many of each type 
(e.g., +, -)?

 Experience: data X with predetermined labels Y

Supervised Learning: a computer learns to assign an 

output for a given set of inputs



Supervised Learning Tasks
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Sample Frame Construction: identifying locations of interest from 

Google Maps images or subpopulations from larger sample frames

Imputing Item Non-Response Values: predicting what respondents 

might have answered based on their responses to other questions

Response Propensities: predicting whether a respondent will 

respond to a survey/interview request (responsive design)



Supervised Learning Tasks
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Automated Coding: coding open-ended responses and 

respondent/interviewer behaviors from audio/transcripts

Data Analysis: predicting future outcomes based on patterns 

discovered in collected survey data



Unsupervised Learning Problems
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 Tasks: find patterns in inputs X

 Discovering categories of customers, finding frequently 

co-occurring events, creating more compact 

representations of data

 Performance Measures: similarity, uniqueness

 Experience: data X (with no labels Y)

Unsupervised Learning: a computer learns relationships 

between sets of inputs (features or instances)



Unsupervised Learning Problems
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 How to measure similarity? Distance functions!

 Manhattan and Euclidian 

 How different are the values?

 Hamming 

 Number of features with different values?

 Jaccard 

 How many shared over how many values?

 Useful if instances have different numbers of features 

(e.g., missing values)



Unsupervised Learning Tasks
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Sample Frame Construction: Creating strata of respondents based 

on shared characteristics for stratified sampling designs

Behavior Modeling: discovering types of behaviors exhibited by 

respondents and interviewers based on paradata 

Questionnaire Design: identifying common responses between 

questions to reduce questionnaire size (adaptive design)



Reinforcement Learning Problems
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Agent Environment

Reasoning

Actions

States

(Situations)



Reinforcement Learning Problems
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 Tasks: find sequences of actions that change the 

state of the world to ones that are desirable

 Determining strategies for winning games, robotic 

movement, autonomous cars, human-agent interactions

 Performance Measures: cumulative rewards/costs, 

numbers of actions required

 Experience: state/action/reward combinations

Reinforcement Learning: a computer learns how to 

choose actions to accomplish one or more goals



Reinforcement Learning Problems
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Customized Questionnaires: intelligent surveys that 

adapt what questions to ask based on data already 

collected and respondent’s behavior

Automated Interviewers: physical devices (e.g., Google 

Home®, Amazon Alexa®, Apple HomePod®) that interact 

with respondents and periodically perform interviews

Survey Recommendations: matching respondents to 

surveys or prior survey questions for particular purposes



Supervised Machine Learning
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 Next, we are going to look more in-depth at 

approaches for supervised machine learning

 This is the most common type of machine learning 

problem

 What are Machine Learning Representations?

 What are Decision Trees and Random Forests?

 What are Neural Networks?

 What are other common approaches?



Supervised Learning Representations
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Representation: how the computer thinks about what it is 

learning (how it organizes information, type of model)

Decision Trees

Neural Network

Bayesian Networks



Historical Development
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1980s 1990s 2000s 2010s

Neural Networks

Decision Trees Ensemble Methods

Bayesian Networks

Deep Learning

SVMs



Supervised Learning Algorithms
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Algorithm: what sequence of steps the computer follows 

to learn a model from data

Decision Trees

ID3: categorial features

and labels

C4.5: categorial or numeric

features, categorical labels

CART: categorial or numeric

features and labels

 Often multiple choices for same representation

 Offer different improvements over other algorithms



Illustrative Example
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 Dataset from “An Introduction to Machine Learning 

Methods for Survey Researchers” in Survey Practice 

(Buskirk et al., 2018)

 Considering attributes:

 Age, Cellphone, Education, Gender, Income, Landline, 

Region

 Labels: Respondent or Non-Respondent

Response Propensities: predicting whether a respondent will 

respond to a survey/interview request (responsive design)



Decision Trees (CART)
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 Decision Tree: classifier that looks at combinations 

of attribute values to make a prediction



Decision Trees (CART)
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 Nodes in the tree (big squares) represent attributes

 Branches in the tree (lines between nodes) represent 

values of those attributes

 Leaves at the end of the tree 

represent predictions



When to Use Decision Trees
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 Generally for classification problems

 Exception: CART for regression

 When we want to be able to understand what the 

machine learned (transparency)

 More trust in predictions, new human knowledge

 When there are disjunctive rules generating labels

 Respondent when Educ. = College AND Landline = Yes

 When the attributes are categorical (or numeric)

 When there might be measurement error

 When there might be missing data



Learning a Tree
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 To learn a tree from a set of data S (using CART)

 Else find the attribute A that best informs the decision 

tree on the current data S

 Create a node for attribute A with two branches

 Split the data S into two sets SL and SR, one for each branch

 Repeat the process for each each new data set



Picking the Best Attributes
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 How do we determine the “best” attribute?

 The one that reduces the uncertainty in the label the most!

 Best case scenario: all instances in SL have same label, 

also all instances in SR have the same label

 Then there is no more uncertainty about which label to 

predict (and the next nodes will be leaf nodes)

Data S

5 instances with

Label No

5 instances with

Label Yes

Data SL

5 instances with

Label No

0 instances with

Label Yes

Data SR

0 instances with

Label No

5 instances with

Label Yes



Picking the Best Attributes
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 How do we measure “uncertainty” in data S?

 For classification, we consider the sum of the variances in 
the proportions of the labels

 Also called the Gini index

Data S

5 instances with

Label No

5 instances with

Label Yes

𝐺𝑖𝑛𝑖 𝑆 = 

𝑙𝑎𝑏𝑒𝑙𝑠 𝑦

𝑃𝑦 𝑆 ∗ (1 − 𝑃𝑦 𝑆 ) 𝑃𝑦 𝑆 =
# 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 𝑖𝑛 𝑆 𝑤𝑖𝑡ℎ 𝑙𝑎𝑏𝑒𝑙 𝑦

# 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 𝑖𝑛 𝑆

𝑃𝑁𝑜 𝑆 =
5

10
= 0.5 𝑃𝑌𝑒𝑠 𝑆 =

5

10
= 0.5

𝐺𝑖𝑛𝑖 𝑆 = 𝑃𝑁𝑜 𝑆 ∗ 1 − 𝑃𝑁𝑜 𝑆 + 𝑃𝑌𝑒𝑠 𝑆 ∗ 1 − 𝑃𝑌𝑒𝑠 𝑆

= 0.5 ∗ 0.5 + 0.5 ∗ 0.5 = 𝟎. 𝟓



Attribute Importance
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 The higher up an attribute is in a tree, the more 

“important” it is for prediction (i.e., its predictive 

power)

 Looking at the hierarchy of a tree shows how 

relevant each attribute is in predicting the labels 

(might depend on combinations of features)

 Combinations come from the branches already taken

 Top attribute = its value AND second attribute = its value 

AND …



Special Features
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 If some attributes have missing values in some 

instances:

 CART automatically finds the best alternative attribute 

to use (highest correlation between values) to decide 

whether that instances goes in SL or SR

 Prunes the tree after it is finished learning

 We prefer smaller trees because they are easier to 

work with and might generalize better (Occam’s Razor)

 CART removes some nodes after it is finished if they 

don’t improve the accuracy of predictions very much



Drawbacks to Decision Trees
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 Sensitive to overfitting

 Learns nuances of data used in learning that does not 

generalize to all data

 Pruning only helps so much

 CART nodes always have exactly two children

 Requires an attribute to appear several times to handle 

3+ categories (increases depth of the tree)

 Especially problematic for numeric variables (≤ splits)

 Require retraining when new data is available



Random Forests
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 We can improve on the performance of decision 
trees by not using only one tree at a time

 Instead, we create a forest of trees and combine the 
predictions of individual trees

 Helps reduce the variance in the predictions made

 One tree might have learned some knowledge about 
the world

 Many trees collectively learn more 

“Alone we can do so little, together we can do so much.” – Helen Keller

”None of us is as smart as all of us.”  – Ken Blanchard



When to Use Random Forests
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 Similar to when we use decision trees

 Classification problems with categorical (or numeric) 

attributes

 When we want to understand how predictions are 

made

 When we have noisy/missing data

 Why forests over trees?

 Often better accuracy (tradeoff time for performance)

 Reduces overfitting (so don’t have to throw out 

information)



Predicting Labels
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 Classification: Take a majority vote of the 

individual trees, predict the most common label

voted

Tree1 Prediction: Yes Tree3 Prediction: YesTree2 Prediction: No

Final Prediction: Yes (2 Yes, 1 No)



Predicting Labels
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 Regression: Predict the average value predicted 

by the individual trees

Tree1 Prediction: 3.2 Tree3 Prediction: 4.0Tree2 Prediction: 2.1

Final Prediction: 3.1 = (3.2 + 2.1 + 4.0) / 3



Learning a Forest
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 How do we build multiple trees that are different?

 Give them different data sets S

 Different sets of instances using bagging (bootstrap 
aggregating)

 Randomly sample instances with replacement

 Different trees will learn special knowledge about different input 
data

Data S

Instance 1

Instance 2

Instance 3

Instance 4

….

Data S1

Instance 1

Instance 1

Instance 10

Instance 14

….

Data S2

Instance 5

Instance 7

Instance 21

Instance 21

….

Data S3

Instance 2

Instance 9

Instance 11

Instance 37

….



Learning a Forest
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 How do we build multiple trees that are different?

 Give them different data sets S

 Different sets of attributes

 Only consider a random set of attributes (of count m) for 

each node in the tree

 m = # 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠 for classification, 
# 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠

3
for regression

 Different trees will consider each attribute at different times 

(learning different combinations of values)



Attribute Importance
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 Similar to decision trees, we can evaluate how 

important each attribute was in the prediction 

process

 Average the reduction in uncertainty (Gini for 

classification, variance for regression) each time the 

attribute is used anywhere in a tree

 Can then rank attributes based on this average 

uncertainty reduction



Drawbacks to Random Forests
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 More hyperparameters to tune than decision trees

 Number of trees, depth of trees, number of attributes, 

etc.

 Requires finding a good combination (additional effort 

for better performance)

 Increases the bias in the predictions, but reduces 

the variance (compared to decision trees)

 More bias because considering less data (instances and 

attributes)

 Still usually better overall results



Neural Networks
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 Inspired by biology and physical underpinnings of 

human learning

 Human brain:

 Composed of around 1010 neurons

 Average connections per neuron: 

104-105 other neurons

 Time to recognize a scene: 

around 0.1 seconds

 Only ~100 processing steps

 Implies brain is very parallelized!



Attribute 1

Attribute 2

Attribute 4

Attribute 6

Attribute 3

Attribute 7

Attribute 5

Σ Prediction

w1
w2

w3

w4

w5

w6

w7

b

Linear Regression

43
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Age

Cellphone

Income

Landline

Education

Region

Gender

Σ Respond?

w1
w2

w3

w4

w5

w6

w7

b

Logistic Regression

σ

44
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Age

Cellphone

Income

Landline

Education

Region

Gender

Σ Respond?

w1
w2

w3

w4

w5

w6

w7

b

Logistic Regression as a Neuron

σ

45

Neuron



Age

Cellphone

Income

Landline

Education

Region

Gender

Respond?

Neuron 1

Neuron 2

Neuron 3

Neuron n

…

Neuron o

Each Neuron is a logistic regression model

We train multiple Neurons to learn different 

features in the data to help with prediction

We stack Neurons in multiple Layers in order to

combine their features to make a single

prediction (non-linear modeling)

Neural Networks

46



When to Use Neural Networks
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 Current trend in machine learning: for everything

 When there are complex relationships between 

features and labels

 When many features are numeric

 When labels are numeric (regression) or there are 

3+ possible labels (or more than one label)

Universal Approximation Theorem (paraphrased): 

almost every function mapping some set of features to a 

label can be approximated well with a neural network



Learning a Network
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 Learning = finding a good set of weights for each 

input into each neuron

 More difficult than logistic regression

 Many more interconnected weights, so not guaranteed 

to find optimal set of weights

 Instead, iteratively adjust weights after looking at 

data multiple times

 Start with random weights, then adjust towards better 

performance (based on blame for errors in prediction)

 Process: backpropagation (several different algorithms 

of varying complexity)



Dropout
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 Similar to decision trees, neural networks are prone 

to overfit the data used for learning

 Learn nuances not present in all data

 Common approach: turn off a random subset of 

neurons each time we train

 Spread learning across all neurons so none specialize 

too much (knowledge is shared throughout network)

 Similar to how human brain learns after injury



Respond?

Neuron 1-1

Neuron 1-2

Neuron 1-3

Neuron 1-n

…

Neuron o

Dropout

50

Neuron 1-1

Neuron 1-2

Neuron 1-3

Neuron 1-n

…

Age

Cellphone

Income

Landline

Education

Region

Gender



Hyperparameters
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 Neural networks suffer the most hyperparameters of 
any representation

 Four most common:

1. Number of layers (how many abstractions)

2. Number of neurons in each hidden layer (how many 
patterns)

3. Learning rate (how aggressively to change weights)

4. Dropout proportion (how robust to overfitting)

 Often have to do a search over all combinations

 Difficult to optimize one at a time due to interdependence



Drawbacks to Neural Networks
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 Inputs can become very large when working with 

categorical attributes (need to convert)

 Cannot handle missing data, and assumes all 

attributes are relevant to predicting the label

 Often the longest time spent learning the models

 Speedups from special hardware (video cards)

 Generally opaque models

 Cannot interpret weights as easily as in logistic 

regression



Comparing Representations
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General 

Performance
Transparent Fast

Domain 

Expertise
Retraining

Decision 

Trees

3

Random 

Forests

2

Neural 

Networks

1

Bayesian 

Networks

2-3

SVMs 2



1 2 3 4 5

Machine Learning Process
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 Now, we are going to take a look at how the 

machine learning process occurs

 What are the primary steps we take to help a 

computer learn a model of a given representation

Data

Preprocessing

Feature 

Selection

Splitting

Data Sets

Training 

the Model

Evaluating

Performance



Data Preprocessing
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 Common Steps (especially for neural networks):

 Normalizing numeric attributes

 Creating one-hot attributes for categorical attributes

 Converting text data to n-grams

 Filtering missing data

Data Preprocessing: transforming data before 

performing machine learning to aid in the learning 

process



Feature Selection
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 Problem: Often, we have many attributes and we 

aren’t sure a priori which ones are most relevant

 Especially when data comes from Big Data/Organic 

sources

 If we have established theory, this step isn’t 

necessary

 Unless you want to validate the theory

Feature Selection: selecting the attributes that are most 

relevant to the machine learning process



Feature Selection
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 Common approaches to feature selection

 Principle Component Analysis (PCA): finding linear 
combinations of attributes that account for the most 
variance in the data

 Forward Search: start with only one attribute, select the 
one that is most predictive of the label.  Then add each 
other variable to find the most predictive pair, etc.

 Continue until adding variables doesn’t improve 
performance

 Backward Search: start with all attributes, remove one 
at a time until performance is worsened (opposite of 
forward search!)



Splitting Up Data
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 When testing machine learning to see if it works for 

our task, we often do not learn from all data

 Instead, we split it into three data sets

 Training Set: data used to learn the model

 Validation Set: data used to tune parameters

 Testing Set: data used to evaluate the model

All Available Data

Valid. SetTraining Set Testing Set



Splitting Up Data
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 Why multiple data sets?

 Need a separate testing set so that we can see if our 

model generalizes to unseen data

 Evaluating on the training set only verifies that the model 

can memorize information

 In practice, the data we make predictions for (e.g., future 

respondents) would not be available during training

 Use a third (validation) set for tuning parameters

 Do not want to use training set for the same reasons above

 Not fair to use testing set since we wouldn’t know that data 

when tuning the models



Splitting Up Data
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 How do we split the data?

 First, we randomize it (prevent order effects)

 Then, we have two options:

1. Grab first T% for training, next V% for validation, 

and remaining (100 – T – V)% for testing

 Common values: T = 60%, V = 20%

 Each data point is in one and only one set

2. Use k-fold cross-validation

 Allows each data point to rotate between each set

 Offers additional statistical power



Splitting Up Data
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 First time: first fold is validation, second is testing, rest 
for training

 Second time: second fold is validation, third is testing, 
rest is training

 Last time: last fold is validation, first is testing, rest is 
training

k-fold Cross-Validation: splitting the data into k equally 

sized folds, then rotating how each fold is used

Testing ValidationTraining



Evaluating Machine Learning
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 Classification: create a 
confusion matrix

 Rows = actual labels

 Columns = predicted labels

 Values = counts of how 
often each pair occurred 
for the test (or validation) 
set

Confusion Matrix: contingency table showing how often 

each label was predicted for each actual label

Completed Breakoff

Completed 1000 50

Breakoff 100 200

Predicted Label

A
ct

u
a
l 
La

b
e
l



Evaluating Machine Learning
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 Accuracy tells us how well we performed across all 

labels

 Accuracy = proportion of all instances correctly classified

= (sum on diagonal) / (sum of all cells)

Completed Breakoff

Completed 1000 50

Breakoff 100 200

Predicted Label

A
ct

u
a
l 
La

b
e
l

Accuracy = (1000 + 200) / (1000 + 50 + 100 + 200)

= 1200 / 1350 = 0.8888 = 88.88%



Evaluating Machine Learning
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 Recall tells us how well we predicted a particular 

label (finer grained inspection than accuracy)

 Recally = proportion of instances with label y correctly 

predicted

= (cell YY) / (sum of row Y)

Completed Breakoff

Completed 1000 50

Breakoff 100 200

Predicted Label

A
ct

u
a
l 
La

b
e
l

RecallBreakoff = 200 / (200 + 100) = 0.6667 = 66.67%



Evaluating Machine Learning
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 If we have only two labels, then:

 Recall for the “positive” label is called Sensitivity

 Also True Positive Rate

 Recall for the “negative” label is called Specificity

 Also True Negative Rate

 Example: When predicting breakoff vs. completed, 
breakoff is ”positive” label since we are trying to 
anticipate (and ultimately prevent) breakoff

Completed Breakoff

Completed 1000 50

Breakoff 100 200

Predicted Label

A
ct

u
a
l 
La

b
e
l



Evaluating Machine Learning
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 Precision tells us how often we were correct if we 

predicted a particular label

 “Crying wolf” performance

 Precisiony = proportion of times we predicted label y 

that were correct

= (cell YY) / (sum of column Y)

Completed Breakoff

Completed 1000 50

Breakoff 100 200

Predicted Label

A
ct

u
a
l 
La

b
e
l

PrecisionBreakoff = 200 / (200 + 50) = 0.8 = 80.00%



Evaluating Machine Learning
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 If we care most about identifying all cases of 

something (e.g., breakoff) and can afford some 

false positives

 Then we care more about maximizing recall than 

precision

 If false positives are expensive (e.g., adaptive 

design)

 Then we might try to balance both precision and recall 

(or even favor precision)



Evaluating Machine Learning
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 For regression problems, we cannot calculate a 

confusion matrix

 Instead, we evaluate using different performance 

measures.  Two common ones:

 Mean Squared Error: how close are the predicted values 

to the actual labels? (squared penalizes outliers)

 R2 Goodness of Fit: how much of the variance in the 

labels were accounted for by the attributes in the model

𝑀𝑆𝐸 =
1

# 𝑜𝑓 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠


𝑖=1

# 𝑜𝑓 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠

𝑎𝑐𝑡𝑢𝑎𝑙𝑖 − 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑖
2



Previewing the Future
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 Emerging research in Deep Learning will enable 

more tasks to be automated/enhanced in Survey 

Research

 Working with Image Data

 Working with Sequential Data

A computer learns if it improves its performance on a 

task over time based on experience. 

Adapted from Mitchell (1997)



Learning about Images
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 Images store information in two or three dimensions:

 Two dimensions for width and height

 Third dimension captures color

 1 channel each for Red, Green, and Blue (RGB)

 Only 2D if image is in grayscale



Learning about Images
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 In images, location matters

 Pixels near each other share more information

 Pixels far apart are often completely unrelated

 Implication: if we make instances for learning 

where attributes are each pixel’s color values

 Then considering all attributes at the same time is 

inefficient

 Also confusing if we assume all attributes are relevant



Learning about Images
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 State-of-the-art in Image Machine Learning: 

Convolutional Neural Networks

 Popular topic in deep learning

 Best models outperform humans in deciding what is in 

an image

 Difference from traditional neural networks

 Consider a sliding window over an image to only look 

at some pixels at a time (find objects within images)

 Combine information from all locations of sliding 

window to make a prediction (still consider all pixels)



Learning over Observations
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 However, life unfolds over time

 Speech is a sequence of sounds

 Traveling is a sequence of locations

 Days are sequences of activities



Learning over Observations
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 Two common approaches to learning over 

observations

 Autoregression: create instances that combine the 

attributes of the last k observations

 Represent a sliding window over time of size k

Instance1 Instance2 Instance3 Instance4 Instance5 Instance6 Instance7

Instance1 Instance2 Instance3 Instance4 Instance5 Instance6 Instance7

Instance1 Instance2 Instance3 Instance4 Instance5 Instance6 Instance7
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Device Type

Action Type

Question

Time Elapsed

Survey Page

Scroll Distance

(Re)answer

Straightlining

Neuron 1

Neuron 2

Neuron 3

Neuron n

…

Neuron o

Recurrent neural networks feed the outputs 

of neurons back into themselves as inputs

Enables network to learn to remember 

information over time

Recurrent Neural Networks



Learning over Observations
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 Two common approaches to learning over 
observations

 Autoregression works with any machine learning 
representation/algorithm

 RNNs are a special kind of neural network and have 
require more computational resources

 Autoregression assumes a fixed time window size k

 RNNs learn over variable length sequences (more 
flexible)

 RNNs are the standard in speech data



Summary
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 Machine learning has many uses for Survey Research (now 
and in the future)

 Three main types of learning: supervised, unsupervised, 
reinforcement

 Popular supervised learning approaches: decision trees, 
random forests, neural networks

 Process for machine learning: preprocess data, feature 
selection, split data, train, evaluate performance

Email:  aeck [at] oberlin.edu

Website: http://cs.oberlin.edu/~aeck


