
Let’s Learn about (Machine) Learning!

An Introduction to Machine Learning

for Survey Researchers

Adam Eck

Social Intelligence Lab

Computer Science Department, Oberlin College

AAPOR 2019 Short Course

Toronto, Ontario

May 19, 2019

Acknowledgements

2

 Two outstanding resources for machine learning:

 “Machine Learning” by Tom Mitchell (1997)

 “The Elements of Statistical Learning” by Trevor Hastie,

Robert Tibshirani, and Jerome Friedman (2009)

 Some of these slides are based on multiple sources

(used with copyright permission)

 Lectures from CSCI 374 at Oberlin College

 Previous conference talks

 (Eck, 2016), (Eck & Soh, 2017), (Eck et al., 2018)

What is Machine Learning?

3

 Three key elements

 Task: what we ask the computer to do

 Performance: how well the computer does at that task

 Experience: data we provide to the computer to learn from

 Iterative process: computer gets better at a task over

time (but not necessarily every time)

A computer learns if it improves its performance on a

task over time based on experience.

Adapted from Mitchell (1997)

Tasks vs. Performance and Experience

4

 How we measure performance and what

experience we use depends on the task

Task Performance Experience

Predict Visits from Mobile

Geolocation Data

Accuracy of Visit

Identification

Device data collected from

app throughout the day

Automated Assistant Quality of interview,

Helpfulness of Assistance

Outcomes of interactions

with people

Predicting Breakoff from

Web Surveys

Accuracy of predictions Paradata collected during

prior web surveys

Automating Behavior

Coding

Matching between

automated/manual codes

Transcripts that are manually

coded by a person

What is Machine Learning?

5

 Machine learning is a paradigm for problem solving

 Traditional approach: develop an algorithm to solve a
given problem

 List of steps to take (a recipe or plan)

 Implement those steps in a programming language

 Engineering-focused approach

 Learning approach: provide many examples for the
computer to learn from

 It discovers patterns that solve problems in examples

 Data-focused approach

Why Do We Want Learning?

6

 Computer Science Perspective:

 Task requires too many steps to program (autonomous

cars)

 Task is too difficult to explain (no human expertise)

 Computer can find a solution more efficiently or

effectively

 Want software to be able to adapt (to changing inputs)

 Long-term impact: will open up the creation of

software as tools by non-programmers

Why Do We Want Learning?

7

 Data Science Perspective:

 Can automatically discover patterns and relationships

in data without requiring prior knowledge

 Might have no theory describing the relationships between

predictors and outcomes

 Especially as the sizes of our data sets grow (organic/Big

Data)

 Can validate existing theory

 Eventually to automate tasks that a computer is well

suited to perform

 Free up people to work on more complicated tasks

Terminology

8

Feature or Attribute: a particular type of measurement
AKA: covariates, independent variables, spreadsheet column

Instance: a collection of attribute values for one entity
AKA: observation, data point, spreadsheet row

Label: a particular value assigned to an instance
AKA: outcome, dependent variable

Class: a possible value for a label
Categorical: Classification Numerical: Regression

Terminology

9

 Example Data Set:

Age Gender Education Income

64 F College 60-100k

43 M HS <30k

39 F Less than HS >100k

57 M College 30-60k

Respond?

R

NR

NR

R

Instance1

Instance2

Instance3

Instance4

Attributes/Features Labels

Classes = Respondent (R) or Non-respondent (NR)

Steps to Setting up Learning

10

1. Determine type of learning problem

 What task should the computer learn?

 What data is available?

2. Determine what representation you want to use

 How should the computer “think” about the task?

 What are the characteristics of the task?

3. Determine the learning algorithm you want to use

 How should the computer create and refine the

representation?

 What are the characteristics of the data?

Supervised Learning Problems

11

 Tasks: assign some label Y to data X

 Stock market prediction; weather forecasting;
image recognition; cancer identification

 Performance Measures: accuracy, sensitivity (recall),
specificity, precision

 How many labels Y correct? How many of each type
(e.g., +, -)?

 Experience: data X with predetermined labels Y

Supervised Learning: a computer learns to assign an

output for a given set of inputs

Supervised Learning Tasks

12

Sample Frame Construction: identifying locations of interest from

Google Maps images or subpopulations from larger sample frames

Imputing Item Non-Response Values: predicting what respondents

might have answered based on their responses to other questions

Response Propensities: predicting whether a respondent will

respond to a survey/interview request (responsive design)

Supervised Learning Tasks

13

Automated Coding: coding open-ended responses and

respondent/interviewer behaviors from audio/transcripts

Data Analysis: predicting future outcomes based on patterns

discovered in collected survey data

Unsupervised Learning Problems

14

 Tasks: find patterns in inputs X

 Discovering categories of customers, finding frequently

co-occurring events, creating more compact

representations of data

 Performance Measures: similarity, uniqueness

 Experience: data X (with no labels Y)

Unsupervised Learning: a computer learns relationships

between sets of inputs (features or instances)

Unsupervised Learning Problems

15

 How to measure similarity? Distance functions!

 Manhattan and Euclidian

 How different are the values?

 Hamming

 Number of features with different values?

 Jaccard

 How many shared over how many values?

 Useful if instances have different numbers of features

(e.g., missing values)

Unsupervised Learning Tasks

16

Sample Frame Construction: Creating strata of respondents based

on shared characteristics for stratified sampling designs

Behavior Modeling: discovering types of behaviors exhibited by

respondents and interviewers based on paradata

Questionnaire Design: identifying common responses between

questions to reduce questionnaire size (adaptive design)

Reinforcement Learning Problems

17

Agent Environment

Reasoning

Actions

States

(Situations)

Reinforcement Learning Problems

18

 Tasks: find sequences of actions that change the

state of the world to ones that are desirable

 Determining strategies for winning games, robotic

movement, autonomous cars, human-agent interactions

 Performance Measures: cumulative rewards/costs,

numbers of actions required

 Experience: state/action/reward combinations

Reinforcement Learning: a computer learns how to

choose actions to accomplish one or more goals

Reinforcement Learning Problems

19

Customized Questionnaires: intelligent surveys that

adapt what questions to ask based on data already

collected and respondent’s behavior

Automated Interviewers: physical devices (e.g., Google

Home®, Amazon Alexa®, Apple HomePod®) that interact

with respondents and periodically perform interviews

Survey Recommendations: matching respondents to

surveys or prior survey questions for particular purposes

Supervised Machine Learning

20

 Next, we are going to look more in-depth at

approaches for supervised machine learning

 This is the most common type of machine learning

problem

 What are Machine Learning Representations?

 What are Decision Trees and Random Forests?

 What are Neural Networks?

 What are other common approaches?

Supervised Learning Representations

21

Representation: how the computer thinks about what it is

learning (how it organizes information, type of model)

Decision Trees

Neural Network

Bayesian Networks

Historical Development

22

1980s 1990s 2000s 2010s

Neural Networks

Decision Trees Ensemble Methods

Bayesian Networks

Deep Learning

SVMs

Supervised Learning Algorithms

23

Algorithm: what sequence of steps the computer follows

to learn a model from data

Decision Trees

ID3: categorial features

and labels

C4.5: categorial or numeric

features, categorical labels

CART: categorial or numeric

features and labels

 Often multiple choices for same representation

 Offer different improvements over other algorithms

Illustrative Example

24

 Dataset from “An Introduction to Machine Learning

Methods for Survey Researchers” in Survey Practice

(Buskirk et al., 2018)

 Considering attributes:

 Age, Cellphone, Education, Gender, Income, Landline,

Region

 Labels: Respondent or Non-Respondent

Response Propensities: predicting whether a respondent will

respond to a survey/interview request (responsive design)

Decision Trees (CART)

25

 Decision Tree: classifier that looks at combinations

of attribute values to make a prediction

Decision Trees (CART)

26

 Nodes in the tree (big squares) represent attributes

 Branches in the tree (lines between nodes) represent

values of those attributes

 Leaves at the end of the tree

represent predictions

When to Use Decision Trees

27

 Generally for classification problems

 Exception: CART for regression

 When we want to be able to understand what the

machine learned (transparency)

 More trust in predictions, new human knowledge

 When there are disjunctive rules generating labels

 Respondent when Educ. = College AND Landline = Yes

 When the attributes are categorical (or numeric)

 When there might be measurement error

 When there might be missing data

Learning a Tree

28

 To learn a tree from a set of data S (using CART)

 Else find the attribute A that best informs the decision

tree on the current data S

 Create a node for attribute A with two branches

 Split the data S into two sets SL and SR, one for each branch

 Repeat the process for each each new data set

Picking the Best Attributes

29

 How do we determine the “best” attribute?

 The one that reduces the uncertainty in the label the most!

 Best case scenario: all instances in SL have same label,

also all instances in SR have the same label

 Then there is no more uncertainty about which label to

predict (and the next nodes will be leaf nodes)

Data S

5 instances with

Label No

5 instances with

Label Yes

Data SL

5 instances with

Label No

0 instances with

Label Yes

Data SR

0 instances with

Label No

5 instances with

Label Yes

Picking the Best Attributes

30

 How do we measure “uncertainty” in data S?

 For classification, we consider the sum of the variances in
the proportions of the labels

 Also called the Gini index

Data S

5 instances with

Label No

5 instances with

Label Yes

𝐺𝑖𝑛𝑖 𝑆 =

𝑙𝑎𝑏𝑒𝑙𝑠 𝑦

𝑃𝑦 𝑆 ∗ (1 − 𝑃𝑦 𝑆) 𝑃𝑦 𝑆 =
𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 𝑖𝑛 𝑆 𝑤𝑖𝑡ℎ 𝑙𝑎𝑏𝑒𝑙 𝑦

𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 𝑖𝑛 𝑆

𝑃𝑁𝑜 𝑆 =
5

10
= 0.5 𝑃𝑌𝑒𝑠 𝑆 =

5

10
= 0.5

𝐺𝑖𝑛𝑖 𝑆 = 𝑃𝑁𝑜 𝑆 ∗ 1 − 𝑃𝑁𝑜 𝑆 + 𝑃𝑌𝑒𝑠 𝑆 ∗ 1 − 𝑃𝑌𝑒𝑠 𝑆

= 0.5 ∗ 0.5 + 0.5 ∗ 0.5 = 𝟎. 𝟓

Attribute Importance

31

 The higher up an attribute is in a tree, the more

“important” it is for prediction (i.e., its predictive

power)

 Looking at the hierarchy of a tree shows how

relevant each attribute is in predicting the labels

(might depend on combinations of features)

 Combinations come from the branches already taken

 Top attribute = its value AND second attribute = its value

AND …

Special Features

32

 If some attributes have missing values in some

instances:

 CART automatically finds the best alternative attribute

to use (highest correlation between values) to decide

whether that instances goes in SL or SR

 Prunes the tree after it is finished learning

 We prefer smaller trees because they are easier to

work with and might generalize better (Occam’s Razor)

 CART removes some nodes after it is finished if they

don’t improve the accuracy of predictions very much

Drawbacks to Decision Trees

33

 Sensitive to overfitting

 Learns nuances of data used in learning that does not

generalize to all data

 Pruning only helps so much

 CART nodes always have exactly two children

 Requires an attribute to appear several times to handle

3+ categories (increases depth of the tree)

 Especially problematic for numeric variables (≤ splits)

 Require retraining when new data is available

Random Forests

34

 We can improve on the performance of decision
trees by not using only one tree at a time

 Instead, we create a forest of trees and combine the
predictions of individual trees

 Helps reduce the variance in the predictions made

 One tree might have learned some knowledge about
the world

 Many trees collectively learn more

“Alone we can do so little, together we can do so much.” – Helen Keller

”None of us is as smart as all of us.” – Ken Blanchard

When to Use Random Forests

35

 Similar to when we use decision trees

 Classification problems with categorical (or numeric)

attributes

 When we want to understand how predictions are

made

 When we have noisy/missing data

 Why forests over trees?

 Often better accuracy (tradeoff time for performance)

 Reduces overfitting (so don’t have to throw out

information)

Predicting Labels

36

 Classification: Take a majority vote of the

individual trees, predict the most common label

voted

Tree1 Prediction: Yes Tree3 Prediction: YesTree2 Prediction: No

Final Prediction: Yes (2 Yes, 1 No)

Predicting Labels

37

 Regression: Predict the average value predicted

by the individual trees

Tree1 Prediction: 3.2 Tree3 Prediction: 4.0Tree2 Prediction: 2.1

Final Prediction: 3.1 = (3.2 + 2.1 + 4.0) / 3

Learning a Forest

38

 How do we build multiple trees that are different?

 Give them different data sets S

 Different sets of instances using bagging (bootstrap
aggregating)

 Randomly sample instances with replacement

 Different trees will learn special knowledge about different input
data

Data S

Instance 1

Instance 2

Instance 3

Instance 4

….

Data S1

Instance 1

Instance 1

Instance 10

Instance 14

….

Data S2

Instance 5

Instance 7

Instance 21

Instance 21

….

Data S3

Instance 2

Instance 9

Instance 11

Instance 37

….

Learning a Forest

39

 How do we build multiple trees that are different?

 Give them different data sets S

 Different sets of attributes

 Only consider a random set of attributes (of count m) for

each node in the tree

 m = # 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠 for classification,
𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠

3
for regression

 Different trees will consider each attribute at different times

(learning different combinations of values)

Attribute Importance

40

 Similar to decision trees, we can evaluate how

important each attribute was in the prediction

process

 Average the reduction in uncertainty (Gini for

classification, variance for regression) each time the

attribute is used anywhere in a tree

 Can then rank attributes based on this average

uncertainty reduction

Drawbacks to Random Forests

41

 More hyperparameters to tune than decision trees

 Number of trees, depth of trees, number of attributes,

etc.

 Requires finding a good combination (additional effort

for better performance)

 Increases the bias in the predictions, but reduces

the variance (compared to decision trees)

 More bias because considering less data (instances and

attributes)

 Still usually better overall results

Neural Networks

42

 Inspired by biology and physical underpinnings of

human learning

 Human brain:

 Composed of around 1010 neurons

 Average connections per neuron:

104-105 other neurons

 Time to recognize a scene:

around 0.1 seconds

 Only ~100 processing steps

 Implies brain is very parallelized!

Attribute 1

Attribute 2

Attribute 4

Attribute 6

Attribute 3

Attribute 7

Attribute 5

Σ Prediction

w1
w2

w3

w4

w5

w6

w7

b

Linear Regression

43

44

Age

Cellphone

Income

Landline

Education

Region

Gender

Σ Respond?

w1
w2

w3

w4

w5

w6

w7

b

Logistic Regression

σ

44

45

Age

Cellphone

Income

Landline

Education

Region

Gender

Σ Respond?

w1
w2

w3

w4

w5

w6

w7

b

Logistic Regression as a Neuron

σ

45

Neuron

Age

Cellphone

Income

Landline

Education

Region

Gender

Respond?

Neuron 1

Neuron 2

Neuron 3

Neuron n

…

Neuron o

Each Neuron is a logistic regression model

We train multiple Neurons to learn different

features in the data to help with prediction

We stack Neurons in multiple Layers in order to

combine their features to make a single

prediction (non-linear modeling)

Neural Networks

46

When to Use Neural Networks

47

 Current trend in machine learning: for everything

 When there are complex relationships between

features and labels

 When many features are numeric

 When labels are numeric (regression) or there are

3+ possible labels (or more than one label)

Universal Approximation Theorem (paraphrased):

almost every function mapping some set of features to a

label can be approximated well with a neural network

Learning a Network

48

 Learning = finding a good set of weights for each

input into each neuron

 More difficult than logistic regression

 Many more interconnected weights, so not guaranteed

to find optimal set of weights

 Instead, iteratively adjust weights after looking at

data multiple times

 Start with random weights, then adjust towards better

performance (based on blame for errors in prediction)

 Process: backpropagation (several different algorithms

of varying complexity)

Dropout

49

 Similar to decision trees, neural networks are prone

to overfit the data used for learning

 Learn nuances not present in all data

 Common approach: turn off a random subset of

neurons each time we train

 Spread learning across all neurons so none specialize

too much (knowledge is shared throughout network)

 Similar to how human brain learns after injury

Respond?

Neuron 1-1

Neuron 1-2

Neuron 1-3

Neuron 1-n

…

Neuron o

Dropout

50

Neuron 1-1

Neuron 1-2

Neuron 1-3

Neuron 1-n

…

Age

Cellphone

Income

Landline

Education

Region

Gender

Hyperparameters

51

 Neural networks suffer the most hyperparameters of
any representation

 Four most common:

1. Number of layers (how many abstractions)

2. Number of neurons in each hidden layer (how many
patterns)

3. Learning rate (how aggressively to change weights)

4. Dropout proportion (how robust to overfitting)

 Often have to do a search over all combinations

 Difficult to optimize one at a time due to interdependence

Drawbacks to Neural Networks

52

 Inputs can become very large when working with

categorical attributes (need to convert)

 Cannot handle missing data, and assumes all

attributes are relevant to predicting the label

 Often the longest time spent learning the models

 Speedups from special hardware (video cards)

 Generally opaque models

 Cannot interpret weights as easily as in logistic

regression

Comparing Representations

53

General

Performance
Transparent Fast

Domain

Expertise
Retraining

Decision

Trees

3

Random

Forests

2

Neural

Networks

1

Bayesian

Networks

2-3

SVMs 2

1 2 3 4 5

Machine Learning Process

54

 Now, we are going to take a look at how the

machine learning process occurs

 What are the primary steps we take to help a

computer learn a model of a given representation

Data

Preprocessing

Feature

Selection

Splitting

Data Sets

Training

the Model

Evaluating

Performance

Data Preprocessing

55

 Common Steps (especially for neural networks):

 Normalizing numeric attributes

 Creating one-hot attributes for categorical attributes

 Converting text data to n-grams

 Filtering missing data

Data Preprocessing: transforming data before

performing machine learning to aid in the learning

process

Feature Selection

56

 Problem: Often, we have many attributes and we

aren’t sure a priori which ones are most relevant

 Especially when data comes from Big Data/Organic

sources

 If we have established theory, this step isn’t

necessary

 Unless you want to validate the theory

Feature Selection: selecting the attributes that are most

relevant to the machine learning process

Feature Selection

57

 Common approaches to feature selection

 Principle Component Analysis (PCA): finding linear
combinations of attributes that account for the most
variance in the data

 Forward Search: start with only one attribute, select the
one that is most predictive of the label. Then add each
other variable to find the most predictive pair, etc.

 Continue until adding variables doesn’t improve
performance

 Backward Search: start with all attributes, remove one
at a time until performance is worsened (opposite of
forward search!)

Splitting Up Data

58

 When testing machine learning to see if it works for

our task, we often do not learn from all data

 Instead, we split it into three data sets

 Training Set: data used to learn the model

 Validation Set: data used to tune parameters

 Testing Set: data used to evaluate the model

All Available Data

Valid. SetTraining Set Testing Set

Splitting Up Data

59

 Why multiple data sets?

 Need a separate testing set so that we can see if our

model generalizes to unseen data

 Evaluating on the training set only verifies that the model

can memorize information

 In practice, the data we make predictions for (e.g., future

respondents) would not be available during training

 Use a third (validation) set for tuning parameters

 Do not want to use training set for the same reasons above

 Not fair to use testing set since we wouldn’t know that data

when tuning the models

Splitting Up Data

60

 How do we split the data?

 First, we randomize it (prevent order effects)

 Then, we have two options:

1. Grab first T% for training, next V% for validation,

and remaining (100 – T – V)% for testing

 Common values: T = 60%, V = 20%

 Each data point is in one and only one set

2. Use k-fold cross-validation

 Allows each data point to rotate between each set

 Offers additional statistical power

Splitting Up Data

61

 First time: first fold is validation, second is testing, rest
for training

 Second time: second fold is validation, third is testing,
rest is training

 Last time: last fold is validation, first is testing, rest is
training

k-fold Cross-Validation: splitting the data into k equally

sized folds, then rotating how each fold is used

Testing ValidationTraining

Evaluating Machine Learning

62

 Classification: create a
confusion matrix

 Rows = actual labels

 Columns = predicted labels

 Values = counts of how
often each pair occurred
for the test (or validation)
set

Confusion Matrix: contingency table showing how often

each label was predicted for each actual label

Completed Breakoff

Completed 1000 50

Breakoff 100 200

Predicted Label

A
ct

u
a
l
La

b
e
l

Evaluating Machine Learning

63

 Accuracy tells us how well we performed across all

labels

 Accuracy = proportion of all instances correctly classified

= (sum on diagonal) / (sum of all cells)

Completed Breakoff

Completed 1000 50

Breakoff 100 200

Predicted Label

A
ct

u
a
l
La

b
e
l

Accuracy = (1000 + 200) / (1000 + 50 + 100 + 200)

= 1200 / 1350 = 0.8888 = 88.88%

Evaluating Machine Learning

64

 Recall tells us how well we predicted a particular

label (finer grained inspection than accuracy)

 Recally = proportion of instances with label y correctly

predicted

= (cell YY) / (sum of row Y)

Completed Breakoff

Completed 1000 50

Breakoff 100 200

Predicted Label

A
ct

u
a
l
La

b
e
l

RecallBreakoff = 200 / (200 + 100) = 0.6667 = 66.67%

Evaluating Machine Learning

65

 If we have only two labels, then:

 Recall for the “positive” label is called Sensitivity

 Also True Positive Rate

 Recall for the “negative” label is called Specificity

 Also True Negative Rate

 Example: When predicting breakoff vs. completed,
breakoff is ”positive” label since we are trying to
anticipate (and ultimately prevent) breakoff

Completed Breakoff

Completed 1000 50

Breakoff 100 200

Predicted Label

A
ct

u
a
l
La

b
e
l

Evaluating Machine Learning

66

 Precision tells us how often we were correct if we

predicted a particular label

 “Crying wolf” performance

 Precisiony = proportion of times we predicted label y

that were correct

= (cell YY) / (sum of column Y)

Completed Breakoff

Completed 1000 50

Breakoff 100 200

Predicted Label

A
ct

u
a
l
La

b
e
l

PrecisionBreakoff = 200 / (200 + 50) = 0.8 = 80.00%

Evaluating Machine Learning

67

 If we care most about identifying all cases of

something (e.g., breakoff) and can afford some

false positives

 Then we care more about maximizing recall than

precision

 If false positives are expensive (e.g., adaptive

design)

 Then we might try to balance both precision and recall

(or even favor precision)

Evaluating Machine Learning

68

 For regression problems, we cannot calculate a

confusion matrix

 Instead, we evaluate using different performance

measures. Two common ones:

 Mean Squared Error: how close are the predicted values

to the actual labels? (squared penalizes outliers)

 R2 Goodness of Fit: how much of the variance in the

labels were accounted for by the attributes in the model

𝑀𝑆𝐸 =
1

𝑜𝑓 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠

𝑖=1

𝑜𝑓 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠

𝑎𝑐𝑡𝑢𝑎𝑙𝑖 − 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑖
2

Previewing the Future

69

 Emerging research in Deep Learning will enable

more tasks to be automated/enhanced in Survey

Research

 Working with Image Data

 Working with Sequential Data

A computer learns if it improves its performance on a

task over time based on experience.

Adapted from Mitchell (1997)

Learning about Images

70

 Images store information in two or three dimensions:

 Two dimensions for width and height

 Third dimension captures color

 1 channel each for Red, Green, and Blue (RGB)

 Only 2D if image is in grayscale

Learning about Images

71

 In images, location matters

 Pixels near each other share more information

 Pixels far apart are often completely unrelated

 Implication: if we make instances for learning

where attributes are each pixel’s color values

 Then considering all attributes at the same time is

inefficient

 Also confusing if we assume all attributes are relevant

Learning about Images

72

 State-of-the-art in Image Machine Learning:

Convolutional Neural Networks

 Popular topic in deep learning

 Best models outperform humans in deciding what is in

an image

 Difference from traditional neural networks

 Consider a sliding window over an image to only look

at some pixels at a time (find objects within images)

 Combine information from all locations of sliding

window to make a prediction (still consider all pixels)

Learning over Observations

73

 However, life unfolds over time

 Speech is a sequence of sounds

 Traveling is a sequence of locations

 Days are sequences of activities

Learning over Observations

74

 Two common approaches to learning over

observations

 Autoregression: create instances that combine the

attributes of the last k observations

 Represent a sliding window over time of size k

Instance1 Instance2 Instance3 Instance4 Instance5 Instance6 Instance7

Instance1 Instance2 Instance3 Instance4 Instance5 Instance6 Instance7

Instance1 Instance2 Instance3 Instance4 Instance5 Instance6 Instance7

75

Device Type

Action Type

Question

Time Elapsed

Survey Page

Scroll Distance

(Re)answer

Straightlining

Neuron 1

Neuron 2

Neuron 3

Neuron n

…

Neuron o

Recurrent neural networks feed the outputs

of neurons back into themselves as inputs

Enables network to learn to remember

information over time

Recurrent Neural Networks

Learning over Observations

76

 Two common approaches to learning over
observations

 Autoregression works with any machine learning
representation/algorithm

 RNNs are a special kind of neural network and have
require more computational resources

 Autoregression assumes a fixed time window size k

 RNNs learn over variable length sequences (more
flexible)

 RNNs are the standard in speech data

Summary

77

 Machine learning has many uses for Survey Research (now
and in the future)

 Three main types of learning: supervised, unsupervised,
reinforcement

 Popular supervised learning approaches: decision trees,
random forests, neural networks

 Process for machine learning: preprocess data, feature
selection, split data, train, evaluate performance

Email: aeck [at] oberlin.edu

Website: http://cs.oberlin.edu/~aeck

